True or false?

1. If a system of linear equations has more equations than unknown variables then there is no solution.
2. If a system has fewer equations than variables there is always a solution.
3. If a system has fewer equations than variables and there is at least one solution then there are infinitely many solutions.

Pre-class Warm-up!!!

Do you already know how to do the following matrix multiplications?
a. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right] \quad \mathrm{Yes} / \mathrm{No}$
b. $\left[\begin{array}{ll}1 & -1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Yes / No
c. $\left[\begin{array}{c}1 \\ -1\end{array}\right]\left[\begin{array}{ll}2 & 3\end{array}\right]$

Yes / No
d. $\left[\begin{array}{c}1 \\ -1\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]$

Yes / No

Section 3.4. Matrix operations
We learn (for matrices) what the following mean:
$A=B, A+B, A-B, c A, A B$
Rules of matrix algebra
Identity matrix, inverse matrix
(In an exercise at the end) the trace of a square matrix, the determinant of a 2×2 matrix.

Two matrices A and B are equal \Leftrightarrow in each position their engines are equal. This implies: if A is $m \times n$ then B is $m \times n$ also

If A, B have the same size we can add them, thus

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]+\left[\begin{array}{ccc}
1 & -1 & 0 \\
3 & -2 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 3 \\
7 & 3 & 7
\end{array}\right]
$$

$$
2\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right]
$$

start by multiplying (row) - (column)

$$
\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right]=[1 \cdot(-1)+2 \cdot 2+3 \cdot 1]=[6]
$$

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=[a u+b v+c w]
$$

Given an $m \times n$ matrix A and an $n \times p B$

Like page 173 question 3:
Let $C=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right] \quad D=\left[\begin{array}{cc}1 & 2 \\ 1 & 0 \\ -1 & 3\end{array}\right]$

$$
\mathrm{E}=\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right] \quad \mathrm{F}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Which of the following cannot be computed?
a. $2 \mathrm{C}-3 \mathrm{D}$
b. EF
c. EC
d. CE No
e. FE
f. $3+\mathrm{C}$ No

Example Are these,

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
5 & 2 & 7 \\
11 & 4 & 13
\end{array}\right]
$$

Like page 173 question 19.
Write the system in the matrix form $A x=b$. Then find the solution in vector form as in equation (9).

$$
\begin{aligned}
& x 1 \quad+3 x 4-x 5=2 \\
& x 2 \quad-2 x 4+6 x 5=-1 \\
& x 3+x 4-8 x 5=5
\end{aligned}
$$

Shlufix:

$$
\begin{array}{rl}
{\left[\begin{array}{rrrrr}
1 & 0 & 0 & 3 & -1 \\
0 & 1 & 0 & -2 & 6 \\
0 & 0 & 1 & 1 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]} & =\left[\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right] \\
A & x=b
\end{array}
$$

Here x_{4}, x_{5} are free vanables

$$
\begin{aligned}
& x_{3}=5-x_{4}+8 x_{5} \\
& x_{2}=-1+2 x_{4}-6 x_{5} \\
& x_{1}=2-3 x_{4}+x_{5}
\end{aligned}
$$

Solution: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}2-3 x_{4}+x_{5} \\ -1+2 x_{4}-6 x_{5} \\ 5-x_{4}+8 x_{5} \\ x_{4} \\ x_{5}\end{array}\right]$

$$
=\left[\begin{array}{c}
2 \\
-1 \\
5 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-3 \\
2 \\
-1 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
\sim 6 \\
8 \\
0 \\
1
\end{array}\right]
$$

This is the desire of form.

Page 174 question 29
If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ show that $\quad I=\left[\begin{array}{ll}l & 0 \\ 0 & 1\end{array}\right]$

$$
A \wedge 2=(a+d) A-(a d-b c) I
$$

Thus $A \wedge 2-\operatorname{trace}(A) A+(\operatorname{det} A) I=0$
(a special case of the Cayley-Hamilton theorem).
Solution.
The left hand side is $A^{2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}a b \\ c\end{array}\right]$

$$
=\left[\begin{array}{cc}
a^{2}+b c & a b+a d \\
a c+c d & b c+d^{2}
\end{array}\right]
$$

The night side is $(a+d) A-(a d-b c)$ 工

$$
=\left[\begin{array}{cc}
a^{2}+a d & a b+b d \\
a c+c d & a d+d^{2}
\end{array}\right]-\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]
$$

These are equal.

$$
\begin{aligned}
& \operatorname{trace}(A)=a+d \\
& \operatorname{det}(A)=a d-b c
\end{aligned}
$$

Page 174 question 35.
Use the formula of Problem 29
$(A \wedge 2-\operatorname{trace}(A) A+(\operatorname{det} A) I=0)$
to find a 2×2 matrix A such that $A \neq 0$ and $A \neq 1$ but such that $A^{\wedge} 2=A$.

$$
A^{2}=(a+d) A-(a d-b c) I
$$

We want $A^{2}=A$
Take $a+d=1$, $\quad a d-b c=0$

$$
\begin{aligned}
& \text { ecg. } \quad a=1 \quad d=0 \quad c=0 \quad b=2 \\
& A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right] \text { or many other }
\end{aligned}
$$

